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Abstract. We show that a number of problems in Artificial Intelligence
can be seen as Stochastic Constraint Optimization Problems (SCOPs):
problems that have both a stochastic and a constraint optimization com-
ponent. We argue that these problems can be modeled in a new language,
SC-ProbLog, that combines a generic Probabilistic Logic Programming
(PLP) language, ProbLog, with stochastic constraint optimization. We
propose a toolchain for effectively solving these SC-ProbLog programs,
which consists of two stages. In the first stage, decision diagrams are com-
piled for the underlying distributions. These diagrams are converted into
models that are solved using Mixed Integer Programming or Constraint
Programming solvers in the second stage. We show that, to yield linear
constraints, decision diagrams need to be compiled in a specific form.
We introduce a new method for compiling small Sentential Decision Di-
agrams in this form. We evaluate the effectiveness of several variations
of this toolchain on test cases in viral marketing and bioinformatics.

1 Introduction

Two important areas in Artificial Intelligence are those of probabilistic reasoning
and constraint optimization. Constraint optimization problems involve finding
the best assignment to given variables satisfying constraints on these variables.
The best-known probabilistic inference problems are arguably those that involve
calculating the marginal conditional probability P (X | Y ) for given sets of vari-
able assignments X and Y in a probability distribution.

In recent years it has become increasingly clear that these areas are closely
related to each other. For example: calculating P (X | Y ) can be understood as
weighted model counting, i.e., calculating a weighted sum over all assignments to
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variables that satisfy constraints [9]. Similarly, maximum a posteriori (MAP) in-
ference, the problem of computing the most likely assignment to given variables
in a distribution, can be seen as a constraint optimization task [23]. Optimization
problems over distributions are closely linked to constraint optimization prob-
lems under soft constraints [4]. Mixed networks essentially combine probabilistic
graphical models and constraint networks [18].

One combination of constraint programming (CP) and probabilistic inference
is the focus of this paper: stochastic constraint programming (SCP) [27], which is
closely related to chance constraint programming [8] and probabilistic constraint
programming [25]. The key idea in SCP is to introduce stochastic constraints and
stochastic optimization criteria in CP. An example of a stochastic constraint is
that the probability of the occurence of an event should not exceed a threshold.

Three key limitations of the state of the art of SCP are the basis for this
work. First: most publications on SCP are focused on specific types of prob-
lems: scheduling and planning problems, typically (see [1, 17] for some recent
examples). Second: there is no generic language for modeling Stochastic Con-
straint Optimization Problems (SCOPs). Third: there is no automatic toolchain
for solving SCOPs written in such a modeling language. The aim of this work is
to advance the state of the art in SCP on these dimensions.

We will use two motivating examples to illustrate that SCP is not only useful
in planning and scheduling, but also in data mining and bioinformatics:

Viral marketing [16]. We are given a social network of individuals whose trust
relationships are probabilistic: the behaviour of one person inspires each of
their friends to do the same with a certain probability. We have budget to
distribute marketing material to k nodes in this network. Which people do
we target for marketing to such that we (indirectly) influence the largest
expected number of people?

Signaling-regulatory pathway inference [21]. We are given a network of
genes, proteins and their interactions, where the interactions are probabilis-
tic. Furthermore, we are given knock-out pairs: pairs of nodes for which
positive or negative change in the expression level of one node is observed
when the other node is knocked out. Paths of interactions can explain the
positive or negative effect of one node on another. In order to better under-
stand these interactions, we want to extract the part of the network that
best explains the positive effect (theory compression [13]). We ask: which in-
teractions should we select such that in the resulting extracted network the
expected number of positive effects is maximized, but the expected number
of negative effects is limited by a constant?

Clearly, these problems also involve a combination of constraint optimization
and probabilistic reasoning. They can be considered instances of SCP, as they
involve finding an assignment to discrete variables, such that a probabilistic
optimization criterion is maximized and a probabilistic constraint is satisfied.

A specific property of these problems is however that the decision problem
is specified over a very different type of distribution than common in existing
SCP systems: probabilistic networks, i.e., networks in which edges exist with a



certain probability. To the best of our knowledge, no tools currently exist that
are sufficiently general that they allow for modeling and solving these SCOPs.
The second aim of this paper is to introduce a system that can be used to model
and solve these SCOPs, and potentially many other SCOPs. As common in CP,
our system consists of two components: a modeling and a solving component.

For the modeling component we propose to exploit the fact that in recent
years, significant progress has been made in the development of probabilistic pro-
gramming languages5. These languages allow programmers to program distribu-
tions. Until now, however, they have rarely been linked to constraint program-
ming. In this paper, we expand a probabilistic programming language, ProbLog
[14], which is especially suited for programming distributions over probabilis-
tic networks, such that it can be used to formalize SCOPs as well; we call the
resulting language SC-ProbLog (Stochastic Constraint Probabilistic Logic Pro-
gramming). This extension of ProbLog builds on an earlier version of ProbLog
for solving decision-theoretic problems (DT-ProbLog) [26]; compared to DT-
ProbLog, SC-ProbLog adds support for hard constraints.

For the solving component we propose to build a toolchain on technology
that is taken both from the probabilistic reasoning and constraint programming
literature. For the probabilistic reasoning component, we focus on the compila-
tion of Sentential Decision Diagrams (SDDs) [12], as they are known to lead to
smaller representations of distributions than for instance Ordered Binary Deci-
sion Diagrams (OBDDs) [7]. We use these SDDs to generate arithmethic circuits
(ACs) and formalize deterministic constraints based on these ACs. For constraint
solving we use both CP solvers and Mixed Integer Programming (MIP) solvers.
A key technical contribution of this paper is that we show that SDDs need to
satisfy strict criteria in order for them to yield linear representations of proba-
bilistic constraints. We introduce a new algorithm for minimizing SDDs within
this normal form. This allows us to reduce the size of the resulting ACs.

This paper is organized as follows. First, we introduce the range of SCOPs
that are the focus of this work, showing by example how problems can be modeled
in the proposed SC-ProbLog language. In Sect. 3 we provide background on
how probabilities are defined and calculated in ProbLog, which is necessary
to understand the first stage of our proposed method. In Sect. 4 we describe
our method: we introduce the aforementioned normal form and our new SDD
minimization algorithm. Experiments are presented in Sect. 5.

2 Modeling Problems in SC-ProbLog: An Example

As common in (one-stage) SCP [27], we assume given two types of variables:
decision variables (denoted as di) and mutually independent stochastic variables
(denoted as ti). The aim is to find an assignment to the decision variables, such
that stochastic constraints and optimization criteria are satisfied. Constraints
and optimization criteria are considered to be stochastic if their definition in-
volves the use of stochastic variables.

5 See http://probabilistic-programming.org/ for a recent list of systems.



a b

c

d

pab

pbc

pbd

pcd

da db
dc

dd

Fig. 1. A social network with a viral marketing problem superimposed on it. Nodes
are people, undirected edges indicate trust relationships, where the probability that
person i and person j trust each other is pij . The decision whether or not to target
person i directly is indicated by variable di.

We consider a limited choice of constraints and variables in this work. First,
we restrict our attention to problems in which all variables take Boolean values.
As a consequence, each stochastic variable is independently true or false with a
given a probability. Second, we only consider constraints of the following kind:

∑

i

rivi ≤ θ and/or
∑

i

rivi ≥ θ, (1)

where vi represents either a decision variable di or the conditional probability
Pi (ϕi | σi) that a stochastic Boolean formula ϕi evaluates to true given an as-
signment to decision variables σi. We let ri ∈ IR be a reward for decision variable
di or formula ϕi evaluating to true, and let θ be a constant threshold. This con-
straint can be thought of as expressing a bound on expected utilities: we sum
rewards for events, each of which could happen with a certain probability, given
an assignment to the decision variables. Whether an event happens in a cer-
tain situation, is expressed using a Boolean logical formula ϕi that includes the
stochastic variables; hence the formula ϕi is only true with a certain probability.

For reasons of simplicity, we limit ourselves in this paper to the case that
ri = 1, although it is trivial to extend our approach to settings in which ri 6= 1.
Optimization criteria are of a similar linear form.

The viral marketing problem [16] is an example of a SCOP in this class of
SCOPs. We illustrate this on the network of Fig. 1. The nodes represent people;
they are either targeted directly in a marketing campaign or not (the decisions).
The (undirected) edges represent probabilities that one person trusts another,
and vice versa. These probabilities are indicated by variables such as pab on the
edges of the graph. We formalize this problem as a SCOP as follows:

– for each node i in the graph we create a decision variable di;
– for each edge (i, j) in the graph we create a stochastic variable tij ; the

probability that the variable tij is true is equal to that of the edge, pij ;
– as constraint we impose the requirement that

∑
i di ≤ k;

– as optimization criterion we use the function
∑

i P (ϕi | d1, . . . , dn); intu-
itively, the aim is that P (ϕi | d1, . . . , dn) represents the conditional prob-
ability that node i is reached if an advertisement is sent to exactly those
people indicated by the variables d1, . . . , dn. By summing these probabili-
ties, we obtain an expected number of persons that is reached.



An important idea is hence to formalize the probability that a person is reached
as the probability that some given logical formula ϕi evaluates to true given an
assignment to decision variables.

We propose the development of a language, SC-ProbLog, for writing down
these constraints and the distributions P (ϕi | d1, . . . , dn) in a systematic man-
ner. This language extends the ProbLog language [14, 15]. An example of a pro-
gram in SC-ProbLog is given below. Lines 1–9 are written in ProbLog; lines 10–14
are specific to SC-ProbLog. As this example demonstrates, ProbLog’s notation
is similar to that of Prolog; its main extension is the ability to add probabilities
to facts (lines 5 and 6). These facts become stochastic variables.

1. % Background knowledge
2. person(a). person(c).
3. person(b). person(d).

4. % Probabilistic facts
5. 0.7::directed(a,b). 0.4::directed(b,d).
6. 0.2::directed(b,c). 0.6::directed(c,d).

7. % Relations
8. trusts(X,Y) :- directed(X,Y). buys(X) :- marketed(X).
9. trusts(X,Y) :- directed(Y,X). buys(X) :- trusts(X,Y), buys(Y).

10. % Decision variables
11. ?::marketed(P) :- person(P).

12. % Constraints and optimization criteria
13. { marketed(P) => 1 :- person(P). } 8.
14. #maximize { buys(P) => 1 :- person(P). }.

The example program reflects several assumptions in lines 8–9. First, the
trust relationship is bidirectional. Second, if a person is targeted directly, they
will certainly buy the product. Third, if a person i trusts another person j and
j buys the product, then i buys the product.

Traditional ProbLog would allow for the calculation of a success probability
for a given query, such as :- buys(a)., based on lines 1–9, for a given set of
facts marketed(X).

In the syntax of lines 10–14, we draw inspiration from DT-ProbLog, a version
of ProbLog with support for optimization, but not constraints [26], and Answer
Set Programming, to formalize constraints. Line 11 defines a decision variable for
each person; it defines a search space of facts that can be added to the ProbLog
program. Subsequently, we specify optimization criteria and constraints. Line 13
defines a reward (a weight ri) of 1 for each person that marketing materials are
sent to, and we bound the number of targeted persons to 8. Line 14 adds a prob-
abilistic query buys(P). for each person P to the optimization criterion. Here
we effectively maximize the expected number of people that buy the product.

3 Background

To understand the model in the previous setting, and to understand our newly
proposed method, it is important to understand in more detail how the calcu-
lation of a conditional probability in ProbLog can be formalized as calculating



the probability that a formula over decision variables and stochastic variables
evaluates to true. We will use our earlier example to illustrate this. For a full
introduction, the reader is referred to the literature [14].

As an example we consider calculating the probability that person a in our
network buys a product, given decision variables for each person. The key insight
is that for the query buys(a), the following grounded formula in Disjunctive
Normal Form (DNF) can be constructed:

ϕa = da ∨ (tab ∧ db) ∨ (tab ∧ tbc ∧ dc) ∨ (tab ∧ tbd ∧ dd)

∨ (tab ∧ tbd ∧ tdc ∧ dc) ∨ (tab ∧ tbc ∧ tcd ∧ dd) ,
(2)

This formula can be derived using Selective Linear Definite clause resolution,
or SLD-resolution [3, 14], from the original ProbLog program. For example: the
clause (tab ∧ db) reflects the possibility that person a buys the product if it is
marketed to b and the edge between nodes a and b is present. As earlier, db is a
decision variable; tab is a stochastic variable with probability pab of being true.

Assume that the product is only marketed to person d. In this case, the
formula reduces to ϕa = (tab ∧ tbd)∨(tab ∧ tbc ∧ tcd) .What is now the probability
that person a will buy the product? The key idea that underlies both SCP
and ProbLog is that the stochastic variables are considered to be true with a
probability that is independent from the other stochastic variables. One possible
model for formula ϕa is: tab = tbd = >, tbc = tcd = ⊥. The probability for this
model (its weight) is pab×pbd× (1−pbc)× (1−pcd). The probability of the query
ϕa is defined to be sum of the weights of all the models of the above formula.
Hence, this problem is a weighted model counting (WMC) problem [9].

Calculating the WMC by enumerating all models is usually not efficient. A
more efficient calculation is the following: pab × pbd + pab × (1− pbd)× pbc × pcd.

The first product corresponds to the first possible path, the second product to
the second path. Note that this formula includes a term (1 − pbd). This term
is necessary as we would otherwise count the model tab = tbd = tbc = tcd = >
twice. This problem is known as the disjoint sum problem.

As the previous example makes clear, computing the probability of a DNF
formula is hard due to the disjoint sum problem; in general, it is known to be
#P-complete [24]. This makes solving this type of SCP particularly hard. How-
ever, several practical approaches have been proposed to make WMC feasible in
practice. One such approach is based on compiling the logical formula into a deci-
sion diagram, and constructing an AC from this diagram [11]. Two well-studied
types of decision diagrams are Ordered Binary Decision Diagrams (OBDDs) [7]
and Sentential Decision Diagrams (SDDs) [12]. The latter type of decision dia-
grams has recently been shown to generalize OBDDs, and can be exponentially
more compact [6]. For this reason, we focus on SDDs.

An SDD consists of decompositions, disjunctions and terminals (see Fig. 2 for
an example SDD for a formula f that is similar to the formula considered earlier,
but that illustrates the concept of SDDs better). A decomposition consists of a
prime p and a sub s, and one decomposition represents the logical formula (p ∧ s).
Disjunction nodes represent the disjunction of two or more decompositions. The
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Fig. 2. Two examples of vtrees (left, center), each for variable order B < A < D < C.
An SDD (right) for logic formula f = (A∧B)∨ (B ∧C)∨ (C ∧D), which respects the
balanced vtree. Example from Darwiche [12].

shape of the SDD is completely determined by a tree structure over the variables
present in it. This tree structure is called a vtree [22]. Two examples of vtrees are
given in Fig. 2. A vtree induces a total variable order for an SDD when traversed
from left to right. We now discuss how vtrees relate to SDDs.

All disjunctions are required to respect specific nodes in the corresponding
vtree. A disjunction respects a vtree node i if for all its child decompositions, each
variable occurring in the sub-SDD rooted at the prime (sub) of the decomposition
occurs in the sub-vtree rooted at the left (right) child of i. Thus, the disjunctions
labeled ‘2’ in Fig. 2 each respect vtree node 2 in the balanced vtree shown in
the same figure. An SDD that respects a right-linear vtree is essentially an
OBDD [12]; hence, SDDs generalize OBDDs. As with OBDDs, the size of an
SDD is influenced by the total variable order that is induced by the vtree it
respects. The shape of the vtree also influences the size of that SDD.

Once the SDD is compiled, WMC can be performed in time linear in the size
of the SDD. In a bottom-up fashion the SDD is first turned into an arithmetic
circuit (AC). In this AC, we assign the appropriate probabilities and decision
values to the leafs of the circuit. The transformation of the SDD into an AC
is simple: each decomposition node is replaced by a product node between its
prime and its sub; each disjunction node is replaced by a summation node over
the child nodes.6 The properties of an SDD ensure that the disjoint sum problem
is taken care of in the resulting circuit.

4 Approach

We first make some observations, then aggregate them in a proposed algorithm.

6 This method was used for counting models of a Boolean formula in decomposable
Deterministic Negation Normal Form (d-DNNF) [11], and can be applied to SDDs
because SDDs are a proper subset of d-DNNFs [12].



SCOP solving with MIP solvers. Given an SC-ProbLog program that models
a certain SCOP instance, the naive way of solving this SCOP is the following.
Compile each of the queries present in the program into an AC containing de-
cision variables and stochastic variables. For each possible assignment to the
decision variables, fill in their values in the AC. Calculate the probabilities using
the AC. Use the resulting probabilities to compute the objective value and to
check for constraint satisfaction. Continue until the optimal strategy is found.

Given that the number of possible assignments is exponential in the num-
ber of decision variables, this approach is feasible for none but the smallest of
problems. A more efficient approach may be to encode the AC in a constraint
programming model, similar to [2], and to use a CP solver on the resulting
model. We explore a new approach, which involves mapping the SDD into a
mixed integer programming (MIP) model.

From SDD to MIP model. Mapping arithmethic circuits into quadratic programs
is relatively easy. Essentially, we introduce an additional variable for each node
in the AC, which we constrain to equal the product or the sum of its children.

For MIP solvers the quadratic constraints in this näıve model can however be
problematic. As the constraints can be shown to be nonpositive semidefinite, we
cannot apply QCQP solvers either. It is important that we are able to linearize
the products in our model, i.e., that we can transform the model in a set of
equivalent linear constraints. As a short reminder, a constraint of the form a =
b × c can be linearized in these cases7: (1) at least one of the two variables in
{b, c} is a constant; (2) at least one of the two variables in {b, c} is a Boolean
variable. Therefore, we need to ensure that in a decomposition node of the SDD,
variables representing the two children satisfy these requirements.

Special vtrees. Next, we show that it suffices to constrain the vtrees to ensure
that SDDs can be linearized. Recall that for each SDD decomposition node, the
respected vtree determines the variables that can occur in the prime and in the
sub. We observe the following: if all left-hand (right-hand) descendants of an
internal vtree node n are stochastic variables, then for each SDD decomposition
node m whose parent respects n, it holds that all variables occuring in m’s prime
(sub) are stochastic as well. A similar property holds for decision variables.

If a prime contains only probabilities, which can be considered as constants
for the model, we can precompute the corresponding value for the prime, effec-
tively eliminating the MIP model variable associated with that prime. Similarly:
since we can linearize all operations on Boolean variables [19], any prime con-
taining only decision variables can be expressed by a Boolean variable with linear
relations to other variables. Thus, in each of these two cases, the expression rep-
resented by the prime can be linearized and hence the product represented by
the SDD decomposition node as well. The same holds for subs.

This leads us to define the concept of mixed and pure nodes in a vtree. A
pure node is an internal node whose leaf descendants all are variables of the same

7 Using the big M-approach [19] with M ≤ 1, as all real values are probabilities.



type (either stochastic or decision), while a mixed node is an internal node that
has leaf descendants of both types. We state that an SDD can be linearized into
a MIP model if the vtree that it respects has the single mixed path property.

Definition 1. Given a vtree on variables of two distinct classes (e.g. decision
and stochastic). This vtree has the single mixed path (SMP) property (and is
called an SMP vtree) if, for each of its internal nodes n, the following holds:
either both children of n are pure nodes, or one child of n is pure and the other
child is mixed. As a consequence, if an SMP vtree has mixed nodes, all mixed
nodes occur on the same path from the root of the vtree to the lowest mixed node.

Minimizing SDDs. Recall that SDDs that respect right-linear vtrees are es-
sentially OBDDs. One can easily verify that a right-linear vtree has the SMP
property: if it has an SMP, it is on the right spine of the vtree. From this fol-
lows that OBDDs can be linearized. However: right-linear vtrees generally do
not yield the smallest SDDs. Since the size of the SDD determines the size of
the resulting MIP model, and thus the solving time, small SDDs are preferable
as input for the MIP model builder.

Choi and Darwiche have proposed a local search algorithm for SDDminimiza-
tion [10]. This algorithm considers three operations on the vtree: right-rotate,
left-rotate (each well-known operations on binary trees) and swap. When a swap
operation is applied to an internal node, the sub vtrees rooted at its children
are swapped. Given a (sub) vtree, the greedy local search algorithm of Choi and
Darwiche loops through its neighbourhood of different vtrees by applying con-
secutive rotate and swap operations, trying to find a vtree that yields a smaller
SDD. Since OBDD minimization is NP-hard [5], we expect SDD minimization
to also be NP-hard, but we are not aware of any published proof of this.

Generally, this minimization produces vtrees that do not have the SMP prop-
erty, even if the initial vtree did; the rotate moves may remove this property.

A desirable property of Choi and Darwiche’s algorithm is the following: the
three local moves considered are sufficient to turn any vtree on a certain set of
variables into any other vtree on the same set of variables. Consequently, the
local moves in principle allow complete traversal of the search space of vtrees.

Here, we propose a simple modification of Choi and Darwiche’s algorithm:
we use the same local moves as their algorithm does, but any move that leads
to a vtree that violates the SMP property is immediately rejected.

While this modification is conceptually easy, a relevant fundamental question
is whether under this modification it is still possible to traverse the space of SMP
vtrees on a fixed set of variables completely. We show that this is indeed the case.

In the following we refer to the leaf node that represents the variable that is
lowest in the order associated with a vtree as LL (lowest leaf).

Lemma 1. Let v be the parent and x the grandparent of the LL in an SMP
vtree. Right rotate on x maintains the SMP property for the vtree rooted at v.

Proof. Consider the left SMP vtree in Fig. 3. Given that this vtree satisfies the
SMP property by assumption, sub vtrees b and c cannot both be mixed, but one
of them can be. Now consider the following cases:
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Fig. 3. Rotate operations on an SMP vtree. Node LL is the lowest variable in the
variable induced by these vtrees. Nodes v and x are internal; b and c are sub vtrees.

Both b and c are pure and of the same class as LL: Lemma 1 holds triv-
ially.

Both b and c are pure, not each of the same class as LL: Any class as-
signment to b and c will preserve the SMP property.

Node b is pure, node c is mixed: Since b is of the same class as LL (by as-
sumption), node v is pure and node x is mixed. After applying right-rotate
on node v, both v and x are mixed, and the SMP property is preserved.

Node b is mixed, node c is pure: Node c can belong to any class, since both
node v and node x are mixed before as well as after applying right-rotate to
v, preserving the SMP property under rotation.

Note that the SMP vtree described above may be a sub vtree of a larger
vtree. The fact that the right-rotate operation does not change the nature (mix
or pure) of the root of this sub vtree, leads to the following corollary:

Corollary 1. A right-rotate operation on the grandparent of the LL node does
not change the SMP status of the full vtree.

Lemma 2. Given an SMP vtree with node LL in order O. We can always ob-
tain an SMP vtree on the same order O in which the LL is the left child of
the root, through a series of right-rotate operations, without ever in the process
transforming it into a vtree that violates the SMP property.

Proof. A right-rotate operation on an internal vtree node decreases its left child’s
distance to the root of the vtree by one. Repeated applications of right-rotate on
LL’s grandparent ultimately makes LL’s parent the vtree’s root. By Lemma 1
and Corrolary 1, the SMP status of the vtree never changes in this process.

Lemma 3. Given an SMP vtree on order O, we can always obtain a right-linear
vtree on the same order, through a series of right-rotate operations, without ever
in the process transforming it into a vtree that violates the SMP property.

Proof. By Lemma 2 we can turn any SMP vtree in one for which the LL is the
left child of the root. This vtree can be made right-linear by recursively applying
this method to the root’s right child.



Lemma 4. A right-linear SMP vtree with variable order O can be transformed
in any SMP vtree on the same variable order by a series of left-rotate operations
without ever in the process transforming into a vtree without the SMP property.

Proof. Since left-rotate is the dual operation of right-rotate, a sequence of right-
rotate moves transforming any vtree to a right-linear one through right-rotate
operations, can simply be reversed through left-rotate operations to turn a right-
linear vtree in any other (on the same variable order).

Note that rotate operations preserve the variable order in the vtree, only chang-
ing its shape. However, the space of possible vtrees on a fixed set of variables is
larger, since different variable orders exist. The order of variables is changed by
the application of swap operations.

Lemma 5. Any right-linear vtree on variable order O can be transformed into
a right-linear vtree on any other variable order O

′ through a series of rotate
and swap operations without ever in the process transforming into a vtree that
violates the SMP property.

Proof. Observe that any right-linear vtree satisfies the SMP property. Observe
that if we can reverse the mutual order of two adjacent variables (e.g. A <

B < C < D becomes A < C < B < D), we can create any variable order by
repeatedly reversing the orders of adjacent variables.

This order reversal is simple. Suppose that node b in the right vtree of Fig. 3
is a single variable, as is LL. We can make LL and b swap places by applying a
left-rotate on v, resulting in the left vtree of Fig. 3, and then applying a swap
operation on v, followed by a right-rotate operation on x.

Theorem 1. Any SMP vtree can be transformed into any other SMP vtree on
the same variable through a series of rotation and swap moves, without ever in
the process transforming into a vtree that does not have the SMP property.

We conclude that an SMP-preserving minimization algorithm that applies only
swap and rotate operations can in principle convert any SMP vtree into any
other SMP vtree on the same variables.

Summary. These observations spark the following algorithm for solving SCOPs:

1. ground formulas for the queries present in the SCOP;
2. compile SMP vtree respecting SDDs for all these queries (ProbLog’s default

mechanism uses right-linear vtrees, so this is automatically satisfied);
3. apply the SMP-preserving local search algorithm to minimize these SDDs;
4. convert the SDDs into arithmetic circuits and then into sets of constraints;
5. add the optimization criterion and linear constraints of the SCOP to the

MIP model, ensuring e.g. that for an upper-bounded stochastic constraint
the model variables representing the root of each relevant query are added
using a linear model constraint of the form

∑
i rivi ≤ θ;

6. apply a MIP solver or a CP solver to find a solution.

For CP solvers, the unconstrained minimization algorithm can be used to obtain
smaller SDDs. ProbLog’s compilation strategy yields SDDs respecting right-
linear vtrees. Thus, without minimization, the SDDs are essentially OBDDs.



5 Experiments

We state some questions that we wish to answer for the approach described in
the previous section. Then we describe the experiments we use to answer these
questions.

Questions. Recall that the size of a MIP or CP model is linear in the size of the
SDDs it is built on. We expect smaller models to be faster to solve. However:
minimizing an SDD takes time. Furthermore, when quadratic constraints are
allowed, we expect to obtain smaller SDDs; however, solving quadratic problems
using CP may take longer than solving MIPs. We pose the following questions:

(Q2) How do SDD sizes depend on the choice of minimization algorithm?
(Q3) How do the calculation times for the full toolchain compare for CP and

MIP solvers, with and without appropriate minimization?
(Q4) How do the computation times for different phases of the algorithm com-

pare to each other?

To answer these questions, and to demontrate that SC-ProbLog programs can
be solved in practice, we apply our algorithms to different SCOPs. Of course,
the constraints determine problem hardness, which begs the question:

(Q1) Which threshold settings are useful for an evaluation of the solving times?

Description Of Test Data. Our experiments focus on two types of real data sets:
a social network and a gene-protein interaction network. As social network
we use the High-energy theory collaborations network [20], which was also used
in earlier publications on viral marketing [16]. This collaboration network of
7610 authors (nodes) has 15751 undirected weighted edges, which we turn into
probabilities following Kempe’s approach [16]. Initial experiments showed that
the full network is too large to ground the problem’s programs. We use Gephi ’s8

implementation of the Louvain algorithm for weighted community detection to
extract communities. We consider two specific communities, referred to as hep-
th47 and hep-th5. Compared to our earlier viral marketing ProbLog program,
in our experiments we include additional stochastic variables such that a person
does not automatically buy a product if it is marketed to them.

As DNA-protein and protein-protein interaction network we use the
Signaling-regulatory Pathway INference [21] (or SPINE ) network, with 4696
nodes representing genes and proteins. It contains 15147 undirected protein-
protein edges, and 5568 directed protein-gene edges. The set provides probabili-
ties for both the undirected protein-protein edges, and the directed protein-gene
edges. We again use Gephi ’s community detection, where we take care to ensure
that both negative and positive knockout pairs are contained in our samples. We
consider models referred to as spine16 and spine27 in our experiments. We use
a specific path definition that requires paths to end in a protein-DNA edge.

8 Available at https://gephi.org/.



Table 1. Performance in seconds of the different methods on the hardest instances
of the testcases for the full toolchain. We give the problem set, optimization and con-
straint setting, number of decision variables nd, number of ProbLog queries nq that
comprise the objective function and/or constraint, threshold θ and objective value vobj
(N/A denotes a problem that has no solution for that threshold). We show the solving
times for the default SDD with no minimization (tnone), SMP minimization (tsmp) and
default minimization (tdefault) for Gurobi and Gecode. We indicate a timeout with t/o.

instance characteristics Gurobi Gecode

problem opt. cst. nd nq θ vobj tnone tsmp tnone tdefault

spine16 maxSumPr. ubTh. 36 23 15 14.40 3.9 3.4 1389.5 591.4
spine16 minTh. lbSumPr. 36 23 6.9 8 4.1 3.9 70.9 31.4
spine27 maxSumPr. ubSumPr. 86 26 1.3 9.51 443.2 471.3 t/o t/o
spine27 maxSumPr. ubTh. 76 13 25 10.18 5.9 5.6 t/o t/o
spine27 maxTh. ubSumPr. 71 13 6.5 52 23.3 21.9 222.9 8.6
spine27 minTh. lbSumPr. 76 13 6.5 8 4.7 5.7 t/o 1878.2
hep-th47 maxSumPr. ubTheory 20 20 10 3.21 545.83 412.7 t/o 130.9
hep-th47 minTh. lbSumPr. 20 20 2 6 188.61 163.8 2859.9 6.9
hep-th5 maxSumPr. ubTh. 33 10 20 2.81 2076.83 1185.7 t/o t/o
hep-th5 minTh. lbSumPr. 33 10 5 N/A 364.62 346.4 t/o t/o

Optimization And Constraint Settings. We consider several combinations of op-
timization and constraint settings on the programs described above. We use the
following abbreviations. maxSumProb denotes a maximization over stochastic
variables, while maxTheory denotes a maximization over the sum of decision
variables set to true (theory size). For constraints we use these abbreviations:
ubSumProb denotes a constraint in which we impose an upper bound on an ex-
pectation; ubTheory denotes a constraint in which we impose an upper bound
on the theory size. We also define minimization and lower bound counterparts of
these settings. Table 1 lists the four datasets that we use, along with the tasks
we evaluate on each dataset. For instance, the combination (maxSumProb,
ubTheory) is the viral marketing setting we considered earlier in this paper.

Software And Hardware. We use Gurobi 6.52 as MIP solver and Gecode 5.0.0
as CP solver9. For each phase of the toolchain (grounding of the program, SDD
compilation, building of the constraint model and solving it) we use a timeout on
our experiments of 3600s. They were implemented in Python 3.4, using ProbLog
2.110 for the grounding of programs. ProbLog 2.1 uses version 1.1.1 of UCLA’s
sdd library11, which is implemented in C, for SDD compilation. They were run
on a machine with an Intel Xeon E5-2630 processor and 512GB RAM, under
Red Hat 4.8.3-9.

9 Available at www.gurobi.com and www.gecode.org.
10 Availabe at https://dtai.cs.kuleuven.be/problog/.
11 Available at http://reasoning.cs.ucla.edu/sdd/.
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Fig. 7. Comparison of full toolchain solv-
ing times for the two solvers.

Results. To answer (Q1), Fig. 4 shows solving times for the hep-th47 problem in
the (maxSumProb, ubTheory) setting, for different thresholds. As expected,
we find that thresholds that are not very strict or loose, require the longest
solving times. We performed similar experiments for the other problem settings
to systematically identify the threshold for which each problem was the hardest,
which we then chose as test cases for the SCOP solving method comparison.

To answer (Q2), Fig. 5 shows a comparison of the size reductions obtained
by the SMP-minimization algorithm and the default minimization algorithm
provided by the sdd library. We find that the SMP minimization algorithm
typically halves the size of the initial SDD. The default minimization typically
reduces the size of the SDD by one or two orders of magnitude.

To answer (Q3), we summarize the performance of the four methods on our
test cases in Table 1. For the hep-th5 problem we selected the ten highest-
degree nodes for the queries, since the program could not be grounded within
one hour if we selected all 33 nodes in the problem for querying. This reduced the



grounding time to about 120 seconds. For the other test cases we have selected
all queries in the problem, with grounding times in the range of 1–5 seconds.

We observe that without any minimization of the SDD, Gurobi consistently
outperforms Gecode. Furthermore, we observe that the difference made by SDD
minimization is larger for the Gecode methods than for the Gurobi methods.
This can largely be explained by the results in Fig. 5, and by those in Fig. 6,
which answer question (Q4). The latter show that generally, compiling SDDs is
a matter of seconds, whether they are being minimized or not. The exception is
the hep-th5 problem, which takes tens of seconds to compile into an SDD when
using SMP minimization. Observe from the table that minimization is still useful
here, as it reduces solving time enough to make up for the extra minimization
time. We note that the minimization algorithms are based on heuristics, and
minimization speed-up may lie in the improvement of these heuristics.

Finally, Fig. 7 shows that the time that is gained during the optimization
part of the entire solving chain, can be orders of magnitude larger than the time
lost by minimizing the SDD. We do note that, since compiling the SDD can be
done in seconds, this effect is less noticable for the smaller problems.

6 Conclusions

We introduced a specific class of SCOPs, in which we can impose constraints and
optimization criteria based on expected utilities over probabilistic programs. We
demonstrated that a viral marketing problem and a problem in bioinformatics
can be considered instances of such SCOPs. We showed how generic probabilistic
programming technology can be combined with constraint optimization solvers
to solve these problems, and introduced an SDD minimization algorithm that
preserves properties that ensure linearizability of the SDD to a MIP model, while
reducing the size of the SDD. While the results are encouraging, an important
remaining challenge is scalability; local search and sampling algorithms could
be of interest here for the probability calculation, the optimization, and the
minimization of circuit sizes. We believe that the methods here presented can
also be applied in other contexts than those studied here. Many possibilities
remain for the further integration of CP and probabilisic programming, given
the limitations on the type of constraints and probabilistic models considered in
this work.
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